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Abstract

Optimal heuristic search has been successful in many do-
mains, including journey planning, route planning and puzzle
solving. Existing work typically assumes that the cost of each
action can easily be obtained. However, in many problems,
the exact edge cost is expensive to compute. Existing search
algorithms face a significant performance bottleneck, due to
an excessive overhead associated with dynamically calculat-
ing exact edge costs.
We present DEA*, an algorithm for problems with expen-
sive edge cost computations. DEA* combines heuristic edge
cost evaluations with delayed node expansions, reducing the
number of exact edge computations. We formally prove that
DEA* is optimal and it is efficient with respect to the number
of exact edge cost computations.
We empirically evaluate DEA* on multiple-worker routing
problems where the exact edge cost is calculated by invok-
ing an external multi-modal journey planning engine. The
results demonstrate the effectiveness of our ideas in reduc-
ing the computational time and improving the solving abil-
ity. In addition, we show the advantages of DEA* in domain-
independent planning, where we simulate that accurate edge
costs are expensive to compute.

1 Introduction
Heuristic search can tackle many difficult problems, includ-
ing puzzles, journey planning and route planning e.g., (Korf
1985; Botea, Nikolova, and Berlingerio 2013; Sturtevant
et al. 2015). Algorithms such as A* (Hart, Nilsson, and
Raphael 1968) can be used to find optimal solutions. Ex-
isting optimal heuristic search algorithms typically assume
that edge costs are known a priori. For example, the unit
edge cost of 1 is used to find the smallest number of moves
to solve a sliding puzzle instance. In the Traveling Salesper-
son Problem (TSP), the cost of an edge typically is fixed,
and edge costs are obtained with a negligible computational
overhead (e.g., using table lookups).

However, in some domains, it is difficult to pre-compute
the exact edge costs. They must be computed dynamically,
during search. When dynamic edge cost computations are
expensive, optimal heuristic search faces a major challenge
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stemming from an excessive overhead caused by edge cost
computations.

Consider the TSP in a setting where a city’s multi-modal
transport network is used for travel. The travel time between
two locations can depend on factors such as the departure
time and uncertain events such as traffic jams. Multi-modal
journey planning can provide travel times between two loca-
tions, with a given starting time, taking into account uncer-
tainty, such as potential missed connections due to variations
in the arrival and departure bus times (Botea, Nikolova, and
Berlingerio 2013).

Despite recent advances in optimal multi-modal jour-
ney planning under uncertainty (Botea and Braghin 2015;
Kishimoto, Botea, and Daly 2016), computing the opti-
mal travel time can be expensive. For instance, Kishimoto,
Botea, and Daly (2016) showed cases where their journey
planner needs 100 seconds and visits 1 million nodes to
compute one journey plan between two locations for a given
departure time. In addition, the optimal travel time between
two locations cannot be precomputed and stored in a table
due to prohibitively many combinations of an origin, a des-
tination, and a departure time.

We present Delayed Expansion A* (DEA*), an A*-based
algorithm that efficiently performs dynamic edge cost com-
putations, during heuristic search. Using admissible esti-
mates of exact edge costs, DEA* can delay the computation
of exact edge costs. This way, DEA* reduces the number
of exact edge computations while always producing opti-
mal solutions. Besides the main DEA* algorithm, we de-
scribe several search enhancements including dominance-
based pruning, and caching.

Part of the evaluation focuses on a problem called
Multiple-Worker Routing Problem (MWRP). We introduce
MWRP and prove that is is an NP-hard problem. Besides
MWRP, we demonstrate our ideas in domain-independent
planning problems, where we simulate that exact edge costs
might be expensive to compute. Our results clearly show that
our approach significantly reduces the computational time
and improves the solving ability.

2 Delayed Expansion A*
In this section, we present our algorithm DEA*. Consider a
problem where edge costs are expensive to compute. As said
earlier, examples could include edges representing a travel



Algorithm 1 DEA*
Input: n0

1: Initialize OPEN = ∅, g(n0) = 0, (∀n 6= n0; g(n) =∞)
2: push(n0,OPEN), Mark s0 as standard (i.e., not temporary)
3: while OPEN 6= ∅ do
4: n = pop(OPEN)
5: if n has a duplicate n′ ∈ CLOSED and g(n′) ≤ g(n) then
6: Continue
7: else if n is temporary then
8: g(n)← g(parent(n)) + ca(parent(n), n)
9: Adjust s(n), h(n), f(n) based on ca

10: push(n,OPEN), Mark n as standard (i.e., not temporary)
11: Continue
12: else
13: Add n to CLOSED, Update g(n) in CLOSED if neces-

sary
14: if n is a goal then
15: Extract and return solution
16: Generate successors(n) based on ch
17: for each m ∈ successors(n) do
18: gh = g(n) + ch(n,m)
19: g(m)← gh, parent(m)← n
20: push(m,OPEN), Mark m as temporary

leg, from an origin to a destination, in a multi-modal travel
network characterized by uncertainty. If A* is used to solve
such a problem, every time when A* traverses1 an edge in
the search graph, the exact cost of that edge has to be avail-
able. A* could compute these costs on demand, and cache
the results for a future reuse.

However, caching and reusing actual costs has limited
usefulness. At the same time, heuristic admissible estima-
tions for travel times can often be provided much more
quickly. DEA* takes advantage of this, using heuristic esti-
mates of edge costs to delay or even avoid entirely the com-
putation of an accurate cost. Often, an optimal solution is
found with no need to compute accurate costs for all gen-
erated nodes. This is where the advantage of DEA* stems
from.

In the rest of this section we describe DEA*, provide an
example and perform a theoretical analysis of DEA*.

2.1 The DEA* Algorithm
Given a search node n, assume that n contains state infor-
mation s(n), a pointer to the parent node, a g-value g(n), a
h-value h(n) and an f = g + h value. In DEA*, we distin-
guish between two types of edge costs, namely an admissi-
ble heuristic estimation ch and an actual cost ca.

Consider an edge (p, n) from a parent node to a succes-
sor node. Using a heuristic cost for this edge could impact
g(n), s(n), h(n) and f(n), as follows. By definition, g is
impacted, as g is the sum of all edge costs of the path avail-
able from the root to n. To show the potential impact on
s(n), consider a problem where some edges encode travel-
ing legs from one location to another. Assume further that
the arrival time at a current location is part of the state def-
inition. Clearly, the arrival time can depend on the cost of
the incoming edge, i.e., on the travel time from a previous

1We say that A* traverses an edge if that edge is the transition
from a node currently being expanded to a successor.
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Figure 1: Example illustrating that standard A* computes an
unnecessary actual edge cost of BD (ca = 1000). In the
figure, “acost” stands for ca and “hcost” stands for ch.

location to the current location. The heuristic h(n) could be
impacted because it typically is a function of the state infor-
mation s(n).

Algorithm 1 shows DEA* in pseudocode. DEA* is built
on top of A*. For clarity, the pseudocode is based on a sim-
ple variant of A*. A newly generated node n could be dis-
carded straight away if a duplicate n′ exists in CLOSED
with f(n′) < f(n). The pseudocode does not show this,
for simplicity.

In DEA*, when a node p is expanded (and thus a
successor n is generated), only the heuristic cost ch
of the edge (p, n) is computed. Node data such as
g(n), s(n), h(n), f(n) are computed with the heuristic cost
ch in use for the edge (p, n).

After being generated, n is enqueued into the OPEN list
based on the heuristic cost ch. A node enqueued into the
OPEN in this fashion is called a temporary node. When a
temporary node n is popped from OPEN, the actual cost ca
of the edge from its parent is computed, and g(n), s(n), h(n)
and f(n) are updated accordingly. The node changes its sta-
tus from a temporary node into a standard node. The node is
re-inserted into the OPEN list with the new f value, and the
main cycle of DEA* continues.

2.2 Example
Fig. 1 illustrates differences between DEA* and A* on a toy,
4-node search graph. A* expands the nodes A, B and C in
this order, during which it evaluates the actual cost of edges
AB, AC, BD and BC in this order. The computation of
BD, which yields a value of 1000, is unnecessary, since all
other edge costs are significantly smaller.

DEA* does not compute the actual cost ca of edge BD.
After the root node A is expanded, B and C are enqueued
with f values based on ch estimations of the edges from
their parent. Then B, whose f value is 3, is popped from the
OPEN list. Now the actual cost ca of the edge AB is com-
puted, and f(B) becomes 6+2 = 8. In this simple example,
we assume that the h value of a node stays constant (i.e, it
does not change when a node changes its status from tem-
porary to permanent). Node B is re-inserted into the OPEN,
and node C is popped out. Its f value increases from 5 to
10, which triggers its re-insertion into the OPEN, with the
new f value. The process continues as shown in Fig. 1, with
node D never being popped from the OPEN.

As illustrated in Fig. 1, DEA* can perform more OPEN
list operations than standard A*. However, in scenarios



where edge cost computations, or even state heuristic com-
putations are expensive, OPEN list operations have a much
smaller impact on the overall running time.

2.3 Theoretical Analysis
We prove two theoretical properties of DEA*.

Theorem 1. DEA* outputs optimal solutions.

Proof. Sketch: DEA* expands only regular nodes, i.e.,
nodes computed with ca in use.

Given DEA*, consider an underlying A* that breaks ties
among nodes in the OPEN in the same way as DEA*. DEA*
and the A* under consideration expand the same set of
nodes, in the same order.

Based on the two facts above, it follows that DEA* and
the corresponding A* compute identical solutions. We omit
a more detailed proof due to space limitations. �

Given a node n, let nh be its temporary version, and na
its standard version. Let p be the parent node. Note that
p is already a standard node at the time when n is gen-
erated, since node are expanded only after they become
standard nodes. Define g(na) = g(p) + ca(p, na), and
g(nh) = g(p) + ch(p, nh). We say that the heuristic h is
consistent with respect to ch if, for every parent-child pair
(p, n), h(p) ≤ ch(p, nh) + h(nh) and h(G) = 0 for every
goal node G. Assuming further that h(nh) ≤ h(na),∀n, if
h is consistent with respect to ch, it is also consistent with
respect to ca (i.e., standard consistency).

Theorem 2. Assume that A* and DEA* use a similar tie
breaking scheme, and that they use a heuristic h that is con-
sistent with respect to ch. DEA* cannot generate more nodes
with actual edge costs than A*.

Proof. Let c∗ be the optimal cost of a solution. The set of
nodes that DEA* generates using ca includes the set S1 of
all nodes n with f(nh) < c∗, plus S2, a subset of the nodes
n with f(nh) = c∗, depending on tie breaking. The set of
nodes generated by A* includes the set S3 of all nodes n
with f(parent(n)) < c∗, plus S4, a subset of all nodes n
with f(parent(n)) = c∗, depending on tie breaking.

Let n be a node and let p be its parent. Then f(p) =
g(p) + h(p) ≤ g(p) + ch(p, nh) + h(nh) = f(nh).

It follows that S1 ⊆ S3 and S2 ⊆ S4, assuming a similar
tie-breaking scheme. �

3 The Multiple-Worker Routing Problem
MWRP is a realistic scheduling problem that requires find-
ing an optimal schedule for a set of workers to deliver ser-
vices to a set of customers residing at different fixed loca-
tions. For simplicity and without loss of generality, we con-
sider a simple healthcare scenario where the customers are
patients and the workers deliver at-home care services such
as nursing care, medical care, and physical therapy. Each pa-
tient has an appointment time when a worker should arrive
and perform a healthcare task. To visit and treat patients,
a worker uses the multi-modal public transport available in
a city. Emergency situations, where using an ambulance is

more appropriate, are beyond our focus. So is the reschedul-
ing and the dynamic assignment or reassignment of tasks.

In a valid solution, all patients have to be treated. Tasks
can be performed later than their appointment time, but each
delay in performing a task degrades the quality of a solution.
The cost of a solution is the sum of all delays of all tasks.
A task starting at its planned appointment time has no delay
(i.e., the delay is 0). Tasks starting later have a positive delay.
A task cannot start earlier than their planned appointment
time (i.e., even if the worker arrives early, they will have to
wait until the task is supposed to start).

More formally, a four-tuple 〈P,A,W, τ(x, y, t)〉 defines
an MWRP, where P = {pi|1 ≤ i ≤ n} is a list of locations
of the patients, A = {ai|1 ≤ i ≤ n} is a list of appointment
times, W = {wj |1 ≤ i ≤ m} is a list of initial locations of
workers and τ(x, y, t) is a travel time function between two
locations x, y ∈ P ∩W with the start time t ∈ [0, 86400].2

It is important to note that in practice the travel time de-
pends on the start time, the schedules of the public transport
vehicles, and the other factors such as uncertainty about the
actual arrival and departure times of buses.

We show that solving MWRP optimally is NP-hard. We
define the MWRP-OPT problem as follows. The input is
an MWRP instance and a number k ≥ 0. The question is
whether the instance has a solution whose cost (delay) D
satisfies D ≤ k.

Theorem 3. MWRP-OPT is NP-hard.

Proof. We show this with a reduction from the single ma-
chine total tardiness problem (SMTTP), an NP-hard prob-
lem (Du and Leung 1990). Given a set of jobs {1, 2, · · · , n}
to be processed on a single machine and the processing
time pi and due date di of each job i, the objective is to
find a schedule for the jobs that minimizes the tardiness
T =

∑n
i=1 Ti, where Ti = max(0, Ci − di) and Ci is the

completion time of job i according to the schedule.
Consider an arbitrary SMTTP instance defined as above.

We construct an MWRP instance in polynomial time as fol-
lows. There is one worker and n patients. The appointment
time of patient i is di, and the duration of the appointment
(treatment) is 0. The worker walks between locations, and
the travel time from location j (j 6= i) to location i is pi.

It is easy to see that the tardiness T in the SMTTP instance
is equal to the total delay (i.e., the cost) D of the MWRP
instance. Thus, the SMTTP instance has a solution with T ≤
k iff the MWRP instance has a solution with D ≤ k. �

State Space Representation
We next define the state space used for solving MWRP. A
search state is represented by 3-tuple 〈B, T, L〉 where B =
{bi|1 ≤ i ≤ n} is a bit vector representing whether a patient
i has already been treated, T = {tj |1 ≤ i ≤ m} is a list of
current times of the workers and L = {lj |1 ≤ i ≤ m} is a
list of locations of workers at time tj .

We define a single action schema, denoted by treat(i, j),
where i is a patient and j is a worker. A treat action has
the following effects. The bit bi corresponding to patient

286400 = 24× 60× 60 is the number of seconds in a day.



i is set to true. The current time tj of worker j is up-
dated as follows. As tasks do not start before the appoint-
ment time ai, the worker’s time is set to either the ar-
rival time, or the appointment time, whichever comes later:
tj = max(tj + τ(lj , pi, tj), ai). Finally, the location lj of
worker j is updated to the location pi of the patient i.

The cost of an action is defined by the delay, namely
max(tj + τ(lj , pi, tj) − ai, 0). This means that the delay
is 0 when the worker arrives in time or earlier than the ap-
pointment time. Otherwise, the delay is positive.

A solution to an MWRP instanceM is a sequence of ac-
tions treat(i, j) where every appointment is addressed with
a treat action. The solution cost is the sum of the action de-
lays. An optimal solution minimizes the total delay.

In this MWRP setting, the travel time between two loca-
tion (i.e., τ(·)) is not given a priori. In practice, the actual
travel time depends on multiple factors such as the origin,
the destination, the time of travel, and the uncertainty about
the multi-modal transportation network (e.g., exact arrival
and departure times for buses). Pre-computing accurate val-
ues for all travel times often is impractical, due to many
combinations of origins, destinations, and departure times.

4 Search Enhancements in MWRP
We present a pruning strategy based on state dominance, an
admissible heuristic h, and other implementation details.

State dominance We assume the following monotonicity
over the arrival time of a trip:
Assumption 1. For any start time t1 ≤ t2, it holds that
t1 + τ(x, y, t1) ≤ t2 + τ(x, y, t2).

This implies the following property:
Proposition 1. The delay d(i, j) = max(tj + τ(lj , pi, tj)−
ai, 0) is monotonically increasing over tj .

Given that the cost of a path is a sum of delays, we get the
following dominance criterion:
Definition 1. For two states s1 and s2, we say that s1 domi-
nates s2 (denoted as s1 ≤ s2) when ∀j, tj(s1) ≤ tj(s2) and
∀j, lj(s1) = lj(s2) and ∀i, bi(s1) = bi(s2).

For such states, the cost of an optimal path containing s1
is no greater than the cost of an optimal path containing s2.
Thus it is safe to prune dominated states without losing the
optimality of the solution computed.

Note that DEA* does not apply the dominance relation-
ship when the dominating node is a temporary node. This
is because the current time of the temporary node could be
updated to a larger value when the node is reevaluated (i.e.,
when the node is converted into a standard node).

Admissible heuristic We have implemented a variant of
the h2 heuristic (Haslum and Geffner 2000), adapted to
MWRP. Since the computation of h2 requires the edge costs
of all applicable actions available at the current state, a
straightforward implementation results in extensive compu-
tations of accurate travel costs. We address this bottleneck
by using heuristics costs ch. That is, the computation of the
h2 heuristic uses heuristic estimations of travel times, in-
stead of accurate travel times.

In our implementation, both accurate travel times and
heuristic travel times are obtained with the DIJA journey
planning system (Botea, Nikolova, and Berlingerio 2013).
The heuristic estimations are computationally cheaper than
the actual travel times. The results of invoking DIJA, both
for heuristic and actual times, are cached for a future reuse.

DIJA pre-computes a lookup table of admissible heuris-
tic estimates of travel times (Botea, Nikolova, and Berlinge-
rio 2013). The system can combine deterministic and non-
deterministic search (Kishimoto, Botea, and Daly 2016).
Specifically, it can run a deterministic A* that computes the
travel time for an optimistic, best-case scenario (e.g. buses
arrive in time). Deterministically computed travel times can
be used as an admissible heuristic for an AO* search that
computes an uncertainty-aware, contingent plan. We use the
search result of DIJA’s A* to compute heuristic travel times
(ch). We denote this heuristic travel time by τ ′(x, y, t). The
function τ ′ also satisfies the admissibility and monotonicity
criteria that hold for τ in Proposition 1.

The h2 heuristic is computed as follows: For each of ev-
ery combinations of two subgoals (treating the correspond-
ing patients), it computes the minimum cost sum (the sum of
delays) for achieving them, and returns their maximum. The
cost is calculated based on the hcost ch. Since ch ≤ ca, h2
heuristics calculated with ch is a lower bound of h2 heuris-
tics calculated with ca, which is in turn a lower bound of the
total cost from the current state to a goal state. Thus, the h2
heuristic computed with ch is admissible.

As mentioned in Sec. 2, amending the cost of the edge
from the parent can impact the state, which contains the cur-
rent time of each worker. This change in the state can also
trigger a change in the heuristic value of that node. Thus,
heuristic functions might have to be computed twice for a
node: once when the node is temporary, and once after the
node becomes a standard node.

We can further enhance DEA* with a combination of the
hmax (aka the h1 heuristic) and h2 heuristics. Temporary
nodes are evaluated with h1, and standard nodes by h2. We
chose this enhancement because it can be trivially imple-
mented in DEA*. In contrast, A* needs a significant modifi-
cation to the algorithm in order to adopt this approach.

Finally, A*’s performance is often affected by the tie-
breaking strategy (Asai and Fukunaga 2016). Ties on the f
value are broken by preferring states with fewer untreated
patients, and further ties are broken in the first-in-last-out
order.

Other implementation details DIJA’s AO* search pro-
duces an optimal contingent plan. In a DIJA optimal con-
tingent plan, there is one safe pathway, and zero or more op-
portunistic pathways. All actions along the safe pathway can
be executed with a probability of 1, if the traveler decides to
follow that pathway. The safe pathway is the slowest (i.e.,
has the largest travel time) among all pathways in the opti-
mal contingent plan. Opportunistic pathways are faster, but
there is no guarantee that the traveler will be able to follow
them at the plan execution time.

For the actual edge cost function ca we use the travel time
of the safe pathway. Other options for implementing ca, such



city nodes segments stops routes trips/day
Dublin 301,638 319,846 4,739 120 7,308

Montpellier 152,949 161,768 1,297 36 3,988
Rome 522,529 566,400 8,896 391 39,422

Table 1: Statistics of transport data used in experiments.

Blind hmax h2 h1h2

City |W | A* DEA* A* DEA* A* DEA* DEA*
Total 50 59 68 77 81 83 85

Dublin 12 14 15 15 21 19 22 22
6 2 4 8 8 12 12 11

Montpellier 12 16 15 17 17 17 15 18
6 1 4 3 5 3 4 5

Rome 12 15 18 18 19 19 19 20
6 2 3 7 7 11 11 9

Table 2: Number of solved instances in MWRP. DEA*
scores are highlighted when they improve upon A*.

as using the expected arrival time, are left as future work.

5 Experimental Results
We evaluate DEA*’s performance in the MWRP and in
domain-independent planning. Experiments are conducted
on an Intel Xeon CPU cluster, with a time and memory limit
of one hour and 1.5 million in-memory states per instance.

Evaluation in the MWRP We generated a total of 180 in-
stances with the real road-map and transportation data from
three European cities (Table 1). In each instance, there are
either 6 or 12 workers, while the number of patients was
varied between 8–24. They do not contain unrealistic con-
figurations (e.g. 6 workers & 24 patients means that each
worker attends 4 patients per hour on average). The loca-
tions of workers W and the locations of patients P are ran-
domly selected within a 2km radius circle in the city cen-
ter. Appointment times are randomly set between 10–11AM.
Workers’ start times are fixed at 10AM.

Our evaluation includes three heuristics used in DEA*:
blind, hmax (aka h1), and h2. Compared to h2, hmax is faster
but less informative, since it returns only the maximum of
the minimum possible delay for each untreated patient. Ta-
ble 2 shows the number of instances solved by A* and
DEA*. In terms of total coverage, DEA* always solves more
instances than A*, when they both use the same heuristic.
That is, a blind DEA* solves 9 more instances than a blind
A*, DEA* with h1 solves 9 more instances than A* with h1,
and DEA* with h2 solves 2 extra instances as compared to
A* with h2.

Moreover, the combined use of h1 and h2 enables DEA*
to solve two additional instances compared to DEA* (h2),
achieving the best solving ability (see h1h2 in Table 2).
The results clearly show the importance of our delayed node
evaluation in the presence of expensive edge cost computa-
tions.

The histogram shown in Fig. 2 indicates the ratio of the
runtime spent by the external DIJA engine to the total time
of A* + DIJA. Despite integrating caching, the edge cost
computations are the main performance bottleneck in A*. In
most cases, irrespective of the heuristics used, calls to DIJA
cover more than 90% of the runtime of A* + DIJA.
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Fig. 3 plots the runtime spent on the external calls to DIJA,
for the instances solved by both DEA* and A*. The time
spent by A* is plotted on the vertical axis against DEA* on
the horizontal axis on logarithmic scales. Points below the
y = x line indicate that DEA* outperforms A*. These fig-
ures clearly show that DEA* successfully reduces the num-
ber of expensive calls to DIJA. The average improvement to
the total runtime was 54%(blind), 123%(hmax), 149%(h2).

Note that these two charts do not show the best perform-
ing version of DEA*, namely DEA* with h1h2. The reason
is that in these charts we wanted to compare DEA* vs A*
when both algorithms use the same heuristic.

Evaluation in Domain Independent Planning We con-
sider the case where domain independent classical planning
needs to account for the expensive edge cost evaluation. Cur-
rent domain independent planners support the cases where
the exact edge costs are obtained easily. For this reason, we
simulate that accurate edge costs might be computationally
expensive to obtain, and that a cheaper heuristic estimation
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can be computed.
We implemented DEA* on top of the cost-optimal Fast

Downward planner based on the landmark-cut heuristic
(Helmert and Domshlak 2009). We selected domains with
non-unit action costs from the optimal tracks in past In-
ternational Planning Competitions. We then assumed that
Fast Downward can obtain the heuristic edge cost ch by
subtracting a constant c from the actual edge cost ca, i.e.
ch = max(0, ca − c), as inspired from (Helmert and Röger
2008).

We selected the following non-unit action cost domains:
barman, cybersec, elevators, floortile, openstacks, parc-
printer, pegsol, scanalyzer, sokoban, transport and wood-
working, and considered 20 instances in each domain. We
ran the solver with a time and memory limit of 30 minutes
and 4GB per instance. hLMcut is computed based on ch, sim-
ilarly to the heuristics h1 and h2 implemented in MWRP.

In Fig. 4, the number of ca calculation required by A* for
each instance is plotted on y-axis, against DEA* on x-axis,
on logarithmic scales. We show results obtained with c =
8 and c = 1, and DEA* significantly reduces the number
of exact edge cost computations. In terms of improvement
factor (i.e. x/y), when c = 8, the minimum factor is 1.6, the
mean 4.5 and the maximum 18. For c = 1, the improvements
are even greater. The minimum improvement factor is 1.7,
the mean factor is 6.5 and the maximum one is 29.

6 Related Work
DEA* is related to Partial Expansion A* (PEA*)
(Yoshizumi, Miura, and Ishida 2000) and Enhanced PEA*
(EPEA*) (Goldenberg et al. 2014). However, these aim
at different types of improvements. PEA* addresses high
memory requirements caused by a large branching factor.
For example, in the Multiple Sequence Alignment (MSA),
the flagship application domain of PEA*, the number of
successors per state is O(2d) where d is the number of se-
quences to be aligned. PEA* generates and evaluates all
successors of a search state but keeps in memory only a
partial subset of successors that look promising. As PEA*

evaluates every successor, it requires that exact edge costs
are immediately available and thus node evaluations are rel-
atively cheap.

Edge cost / g-value evaluation Successors added into OPEN
A* All successors, exact All successors

PEA* All successors, exact Partial subset
DEA* All successors, heuristic All successors

On the other hand, DEA* addresses the issue of expensive
exact edge cost computations required for obtaining the g-
value. When a node n is generated, DEA* uses a heuristic
estimation of the cost of the edge from its parent. The exact
cost computation of that edge is delayed until n is selected
for expansion.

Phillips, Likhachev, and Koenig (2014) present PA*SE,
a parallel A* for robot motion planning domains. PA*SE
is designed for domains where generating successor states
can be expensive. E.g., in motion planning problems succes-
sor generation may involve an expensive and precise colli-
sion checking procedure. In contrast, DEA* is designed for
domains where generating successors is not expensive, but
computing the exact cost of a parent–successor edge could
be.

Deferred evaluation (DE) has been studied in satisficing
domain independent planning (Helmert 2006; Richter and
Helmert 2009). When generating a successor of a node, DE
sets the heuristic value of the successor to that of the par-
ent, thus deferring the successor evaluation. As opposed to
DEA*, this related work assumes that edge costs are readily
available, and suboptimal solutions are allowed.

Decentralized, auction-based multi-agent coordination
has been studied in multi-robot routing problems (Kishi-
moto and Sturtevant: 2008; Kishimoto and Nagano 2016).
Edge costs are dynamically computed via path-finding on
road or game maps. The similarity to DEA* is that edge
costs can be expensive to compute. A key difference is that
auction-based techniques are suboptimal.

7 Conclusions
Heuristic search algorithms typically assume that the cost
of edges in the search graph are readily available. However,
in real-life domains, such as problems that involve travel-
ing between various locations on a map, such a simplifying
assumption does not always hold.

We have introduced DEA*, a search algorithm based on
A*, capable to reduce the number of exact edge cost com-
putations in a search. We formally introduced the Multiple
Worker Routing Problem, a practical application domain in-
spired from the healthcare industry. We provided an NP-
hardness result for MWRP. We evaluated the performance
of DEA* in MWRP and in domain-independent planning.
The results demonstrate a significant performance improve-
ment of DEA* as compared to A*.

As an interesting avenue of future work, Factored Plan-
ning (Amir and Engelhardt 2003; Brafman and Domshlak
2006; Asai and Fukunaga 2015) could incorporate ideas
from DEA*. This framework automatically decomposes the



input problem and solves each subproblem in order to con-
vert the subplans into macro actions. DEA* could improve
this potential bottleneck by replacing the subproblem solv-
ing with a partial computation of the plan.
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