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Abstract

Recent enhancements to greedy best-first search (GBFS) such
as DBFS, ε-GBFS, Type-GBFS improve performance by
occasionally adopting a non-greedy node expansion policy,
resulting in more exploratory behavior. However, previous
exploratory mechanisms do not address exploration within
the space sharing the same heuristic estimate (plateau). In
this paper, we show these two modes of exploration, which
work across (inter-) and within (intra-) plateau, are com-
plementary, and can be combined to yield superior perfor-
mance. We also introduce IP-diversification, a method com-
bining Minimum Spanning Tree and randomization, which
addresses “breadth”-bias instead of the “depth”-bias ad-
dressed by the existing diversification methods. We evalu-
ate IP-diversification for both intra- and inter-plateau explo-
ration, and show that it significantly improves performance
in several domains. Finally, we show that combining diversi-
fication methods results in a planner which is competitive to
the state-of-the-art for satisficing planning.

1 Introduction
Many search problems in AI are too difficult to solve op-
timally, and finding even one satisficing solution is chal-
lenging. Greedy Best-First Search (GBFS) is a best-first
search variant where f(n), the expansion priority of node
n is based only on a heuristic estimate of the node, i.e.,
f(n) = h(n) (in contrast with A∗ search, where the node
priority also considers g(n), the cost from the start state
to n, and f(n) = g(n) + h(h)). Although GBFS ignores
solution optimality, it has been shown to be quite useful
when it is necessary to find some satisficing solution quickly,
and GBFS has been the basis for state-of-the-art domain-
independent planners.

Despite the ubiquitous use of GBFS for satisficing search,
previous work has shown that GBFS is susceptible to be-
ing easily trapped by undetected dead ends and huge search
plateaus. On infinite graphs, GBFS is not even complete
(Valenzano and Xie 2016) because it could be misdirected
by the heuristic guidance forever. These pathological behav-
iors are caused by the fact that the search behavior of GBFS
strongly depends on the quality of the heuristic function.

The problem is exacerbated by the fact that GBFS tends
to be combined with inadmissible heuristic functions such as
the FF heuristic (Hoffmann and Nebel 2001b), Causal Graph

(Helmert 2006) or Landmark-count (Richter, Helmert, and
Westphal 2008) heuristics. An inadmissible heuristic can
cause nodes which are close to the goal (low h∗, optimal cost
to goal) to be incorrectly labeled as unpromising (overesti-
mation: h > h∗), causing GBFS to delay expanding them
until all other nodes in the current local minima with smaller
h-values have been expanded.

Recently, several approaches have been proposed for alle-
viating this problem, e.g., DBFS (Imai and Kishimoto 2011),
ε-GBFS (Valenzano et al. 2014) and Type-GBFS (Xie et
al. 2014). They improve the search performance by occa-
sionally expanding nodes which do not have the lowest h-
value, i.e., diversifying the search. These diversified algo-
rithms provides an opportunity to expand nodes that are mis-
takenly overlooked due to errors made by the heuristic func-
tions. A common objective among these methods is the re-
moval of some (undesirable/unintended) bias, thereby en-
couraging exploration by the search process and adding di-
versity in decision making process. In this paper, we use the
terms “exploration”, “diversity”, and “bias removal” inter-
changeably. Existing methods for exploration have two is-
sues: First, previous methods all employ h-based diversifi-
cation as part of their algorithms in order to avoid the bias
toward the nodes with smaller estimates. However, h-based
diversification cannot detect the bias among nodes with the
same h-cost. Second, as we see later, they are based on di-
versification with respect to search depth (distance from the
start / goal / plateau entrance), so the bias among the set of
nodes with the same search depth is not removed.

We first show that a recently proposed depth-based tie-
breaking strategy for A∗ (Asai and Fukunaga 2016) also im-
proves the performance of GBFS by diversifying the depth
within each h-plateau. Both depth diversification strategy
and Type-GBFS are instances of a type-based diversifica-
tion strategy (Xie et al. 2014): Depth diversification applies
type-based diversification within a plateau, and Type-GBFS
applies it between plateaus. We compare their empirical per-
formance and show that their improvements are complemen-
tary – Two configurations improve the performance in differ-
ent domains, and a configuration using both methods bene-
fits from both, achieving the better coverage. This effectively
shows that inter-plateau and intra-plateau diversification are
two orthogonal usages of diversification.

Next, we propose and evaluate a new diversification



strategy called IP-diversification which addresses diversity
with respect to breadth. We evaluate this new diversifica-
tion strategy both for intra-plateau and inter-plateau explo-
ration. Complementary effects on intra/inter-plateau explo-
ration were observed. In addition, IP-diversification outper-
forms the Type-based diversification strategy. Finally, we
show that by combining several intra/inter plateau explo-
ration strategies, we can improve upon state-of-the-art plan-
ners in terms of coverage.

2 Preliminaries and Background
We first define some notation and the terminology used
throughout the rest of the paper. h(n) denotes the estimate
of the cost from the current node n to the nearest goal node.
g(n) is the current shortest path cost from the initial node
to the current node. f(n) = g(n) + h(n) is the estimate of
the resulting cost of the path to a goal containing the current
node. We omit the argument (n) unless necessary. h∗, g∗ and
f∗ denotes the true optimal cost from n to a goal, from the
start to n, or from the start to a goal through n, respectively.

A sorting strategy for a best first search algorithm tries to
select a single node from the open list (OPEN). Each sorting
strategy is denoted as a vector of several sorting criteria,
such as [criterion1, criterion2, . . ., criterionk], which means:
First, select a set of nodes from OPEN using criterion1. If
there are still multiple nodes remaining in the set, then break
ties using criterion2 and so on, until a single node is selected.
The first-level sorting criterion of a strategy is criterion1, the
second-level sorting criterion is criterion2, and so on.

Using this notation, A∗ without any tie-breaking can be
denoted as [f ], and A∗ which breaks ties according to h
value is denoted as [f, h]. Similarly, GBFS is denoted as [h].
Unless stated otherwise, we assume the nodes are sorted in
increasing order of the key value, and BFS always selects a
node with the smallest key value.

A sorting strategy fails to select a single node when some
nodes share the same sorting keys. In such cases, a search
algorithm must select a node according to a default tie-
breaking criterion, criterionk, such as fifo (first-in-first-out),
lifo (last-in-first-out) or ro (random ordering). For example,
an A∗ using h and fifo tie-breaking is denoted as [f, h, fifo].
By definition, default criteria are guaranteed to return a sin-
gle node from a set of nodes. When the default criterion does
not matter, we may use a wildcard ∗ as in [f, h, ∗].

Given a search algorithm with a sorting strategy, a
plateau (criterion . . .) is a set of nodes in OPEN whose el-
ements share the same sort keys according to non-default
sorting criteria and therefore are indistinguishable. In a case
of A∗ using tie-breaking with h (sorting strategy [f, h, ∗]),
the plateaus are denoted as plateau (f, h), the set of nodes
with the same f cost and the same h cost. We can also
refer to a specific plateau with f = fp and h = hp by
plateau (fp, hp).

Finally, OPEN list alternation (Röger and Helmert 2010)
is a technique to combine multiple sorting strategies in order
to improve the robustness of the search algorithm. Nodes are
simultaneously stored and sorted into independent OPEN
lists with different strategies, and node expansion alternates

among the OPEN lists. We denote an alternating OPEN list
as alt(X1, X2, . . .) where each Xi is a sorting strategy.

Depth-Based Tie-breaking To date, there has been rel-
atively little work on tie-breaking policies for BFS. Re-
cently, Asai and Fukunaga (2016) performed an in-depth in-
vestigation of tie-breaking strategies for A∗, in which the
tie-breaking policy was found to have a significant effect
on the performance when the search plateau is huge. In
the most commonly used sorting strategies, [f, h, fifo] or
[f, h, lifo], the search has a strong bias to focus on either the
regions of smaller (fifo) or larger (lifo) search depth of each
plateau (f, h), causing failure to find the solution within a
given time limit.

To address the issue caused by the search bias within
a plateau, they proposed a notion of depth and diversified
the search over different depths within a plateau. The depth
d(n) of a state n is an integer representing the step-wise
distance from the entrance of the plateau (the most recent
state which entered the plateau, along the path from the
initial state). d(n) = d(m) + 1 when n and the parent
node m are on the same plateau. For example, with strat-
egy [f, h, ∗], plateau (f(n), h(n)) = plateau (f(m), h(m)),
therefore f(n) = f(m) ∧ h(n) = h(m). d(n) is 0 other-
wise. The nodes are stored in buckets indexed by depth, and
expansions are allocated across different buckets with equal
probability at every iteration. The resulting sorting strategy
is denoted as [f, h, 〈d〉, ∗].

For GBFS, to our knowledge, there is currently no well-
established tie-breaking policy analogous to h-based tie-
breaking for A∗. Presumably, this is because while A∗ has
access to three cost values (f , g, and h), GBFS is guided
solely by the heuristic value h.1 As a consequence, im-
provements to GBFS have been primarily achieved by ad-
dressing other aspects, such as modifying the evaluation
scheme (Richter and Westphal 2010, lazy evaluation), queue
alternation (multiple heuristic functions), preferred opera-
tors (Hoffmann and Nebel 2001b), and diversification.

Exploration Mechanisms One recent class of improve-
ments to GBFS seeks to introduce exploration (diversity) to
the search process, as exemplified by DBFS (Imai and Kishi-
moto 2011), ε-GBFS (Valenzano et al. 2014), Type-GBFS
(Xie et al. 2014). These algorithms address the problem of
GBFS getting stuck due to heuristic errors. In GBFS, a node
will not be expanded until it expands all nodes with a lower
h-value in the current local minima. Thus, search progress
can be delayed when a good (low-h∗) node is mistakenly as-
signed a poor (high) h-value (overestimation), or bad (high-
h∗) nodes are assigned promising h-values (low-h, under-
estimation). These exploration strategies allow the search to
escape the local minima by relaxing the h-based best-first
node expansion order.

KBFS(k) (Felner, Kraus, and Korf 2003) attempts to ad-
dress this problem by expanding k nodes at a time. ε-GBFS

1Tie-breaking based on g is sometimes used, but this is moti-
vated as a means to find higher-quality solutions. To our knowl-
edge, in a satisficing context, tie-breaking strategies for reducing
search effort have not been explicitly motivated or evaluated.



(Valenzano et al. 2014) selects a random node from OPEN
with some fixed probability ε < 1. This is a randomized,
weighted alternating OPEN list using [h, ∗] and [ro] (no sort-
ing criteria): alt([h, ∗], [ro]).

While ε-GBFS relies on a pure randomization strategy to
escape traps and introduce exploration, Type-GBFS (Xie et
al. 2014) explicitly seeks to remove bias and diversify the
search by categorizing OPEN according to several key val-
ues, such as [g, h] for each state. Each node is assigned to
a bucket according to its key value. The search then selects
a random node in a random bucket, avoiding the cardinal-
ity bias among buckets. Since Type-GBFS does not sort the
buckets according to the key vector, we use a different no-
tation 〈. . .〉, such as 〈g, h〉 denoting type buckets whose key
values are g and h. In the implementation evaluated by Xie et
al. (2014), Type-GBFS alternates the exploitative (standard
best-first order) expansion and the exploratory (randomized)
expansion. We denote this as alt([h, ∗], [〈g, h〉, ro]).

DBFS (Imai and Kishimoto 2011) diversifies the search
based on g and h values, but with several key differences
from the above two algorithms: First, the exploratory selec-
tion is not uniformly random, but is subject to a particular
distribution function based on h, g, hmin and gmax. Second,
it uses a local search with a bounded number of expansions
equal to h(s), which dynamically balances the exploration
and exploitation — it does more GBFS when h is large (far
from the goal), and less GBFS near the goal (h is small).

GBFS with Local Exploration (GBFS-LE), introduces a
2-level search architecture which runs GBFS until it de-
tects that no improvements have been made for a while, and
then runs a local search (GBFS-LS) or random walk (GBFS-
LRW) in order to find an exit to a more promising region of
the search space (Xie, Müller, and Holte 2014).

3 Intra- and Inter-plateau Diversification
Previous work on exploration for GBFS address the prob-
lem of heuristic errors by occasionally expanding nodes
with high h, both in order to avoid expanding more dead-
end states (high h∗) labeled as promising (low h), or to
find a good state (low h∗) labeled as unpromising (high h).
Since this type of diversification operates across different
search plateaus, we refer to these as inter-plateau explo-
ration. However, we propose another type of exploration,
which we call intra-plateau exploration, which works within
a particular plateau: This type of exploration only changes
expansion order among the nodes within a plateau.

Existing inter-plateau exploration can be understood as a
diversification applied to h∗ plateau. Consider a hypothet-
ical 2-dimensional histogram (Figure 1) of the number of
nodes for each pair h, h∗. If both axes were h∗ (i.e., h is a
perfect heuristic), all nodes would be on the diagonal line
x = y. However, in reality, h has errors relative to h∗, as
would be shown if we projected the histogram to the x-axis.
Since low-h∗ nodes may have high-h values, it is sometimes
reasonable to expand high-h nodes depending on the distri-
bution defined by the problem characteristics and the heuris-
tic function. To our knowledge, all previous work on explo-
ration for GBFS has addressed exploration along this dimen-
sion by ignoring the best-first ordering wrto h.
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Figure 1: A conceptual view of the node distribution wrto h∗
and inadmissible h. The peak line on the surface is on x = y.
Projection to x-axis shows the distribution of h values, while
projection to y-axis shows the distribution of h∗ values.

However, not only can a single h∗-plateau consists of
nodes with different h values, the converse can also be true –
a single h-plateau consists of nodes with different h∗ values,
as would be shown by projecting the histogram to the y-axis
in Figure 1. This leads to an observation that in the worst
case, a naive algorithm may keep expanding bad (high-h∗)
nodes within an h-value plateau. This pathological behavior
happens for each h-plateau and is not explicitly addressed
by the previous diversification techniques because they do
not modify intra-plateau behavior.

Unlike inter-plateau exploration, which addresses in-
correct information for h∗-plateau, intra-plateau explo-
ration addresses the problem of insufficient information
for h-plateau. An intra-plateau exploration strategy tries to
avoid the aforementioned pathology of continually expand-
ing high-h∗ nodes within an h-value plateau. Since we do
not know a priori which nodes in an h-plateau are better
(low-h∗) than the other nodes in the same h-plateau, by
an adversary argument, the safest strategy is to avoid bi-
ased choices – in the absences of useful heuristic knowl-
edge which differentiates among a set of nodes, an expan-
sion policy which is biased to expand some particular group
of states within a plateau can be exploited by an adversary
which seeks to hide better (low-h∗) nodes.

Type-Based Diversification The notions of inter-vs-intra
plateau exploration allows us to discuss and compare depth
diversification (Asai and Fukunaga 2016) and Type-GBFS
(Xie et al. 2014) within a unified framework – it turns out
that these are essentially the same algorithm, except that they
are using different key values (metrics) in different contexts
(inter-vs-intra plateau, satisficing-vs-optimal search).

Lelis, Zilles, and Holte (2013) define a general framework
for adding exploration to search using “type systems”:

Definition 1. A Type system (Lelis, Zilles, and Holte 2013)
is a function from a node to a vector, T : node →
Zk, T (n) = 〈t1(n) . . . tk(n)〉, where each function ti(n) re-
turns an integer for each node n.

Xie et al. proposed a node selection technique based on
type systems.

Definition 2. Type-Based Node Selection (Xie et al. 2014)
with a type system T (·) of k types maintains a k-dimensional
matrix of sets of nodes, where each set Sv is associated with
a vector v = 〈v1, . . . , vk〉. Each node n is stored in ST (n).



For dequeueing, it randomly selects a non-empty set from all
sets, and a random node in the set is dequeued.

The reason for selecting a set at random is to try to allo-
cate the search effort among a diverse set of nodes. Some
sets could contain a large number of nodes while others are
only scarcely populated. Type-based node selection tries to
remove this cardinality bias among buckets. Because type-
based node selection has this diversification as an explicit
goal and is best understood as a diversification strategy, we
call it type-based diversification in the rest of this paper.

Type-GBFS (Xie et al. 2014) uses type-based diversifi-
cation with type system 〈g, h〉 for inter-plateau exploration.
Their inter-plateau exploration is implemented by queue al-
ternation (Röger and Helmert 2010) between standard Best-
First queue and type-based diversification queue.

Depth diversification (Asai and Fukunaga 2016) origi-
nally addressed the issue of zero-cost actions in admissi-
ble search with A∗, and the configuration was denoted as
[f, h, 〈d〉]. In order to use 〈d〉 for GBFS, the resulting con-
figuration is [h, 〈d〉], and the depth d is defined for each h-
plateau. This configuration is considered as an instance of
intra-plateau type-based diversification because it uses type-
based diversification with type system 〈d〉 for diversifying
the search within plateaus defined by h.

3.1 Empirical Comparison of Intra- and
Inter-Plateau Exploration

Since depth-diversification and Type-GBFS turned out to be
instances of the same strategy applied for different purposes
(intra/inter-plateau), we use these as exemplars to compare
the impact of intra/inter-plateau exploration. In the follow-
ing experiments, we empirically show that they achieve
complementary performance improvements. This indicates
that inter/intra-plateau exploration in fact addresses orthog-
onal issues of incorrect and insufficient information, respec-
tively. We then show that intra/inter-plateau exploration can
be successfully combined in a single search algorithm.

We compare the performance of the following config-
urations for Greedy best-first search using the Fast For-
ward heuristic hFF (Hoffmann and Nebel 2001a) and Causal
Graph heuristic hCG (Helmert 2004).
• h: baseline GBFS (eager evaluation).
• hd: Depth diversification (Asai and Fukunaga 2016) –

intra-plateau type-based diversification, [h, 〈d〉].
• hD: Type-GBFS (Xie et al. 2014) – inter-plateau type-

based diversification, alt([h], [〈g, h〉, ro]),
• hdD: A combined configuration of intra- and inter-plateau

type-based diversification, alt([h, 〈d〉], [〈g, h〉, ro]).
Experiments are conducted on a Xeon E5-2666 @

2.9GHz, HyperThreading and TurboBoost disabled. We
used a 4GB memory limit and 5 minutes time limit, on IPC
2011 and 2014 instances. Since IPC 2011 and IPC 2014
contain duplicate domains, we removed duplicates from the
2011 set, keeping the 2014 versions. All implementations
are based on FastDownward (Helmert 2006) and unless
specified, all configurations use fifo default tiebreaking (Fast-
Downward default).

Following previous work (Valenzano et al. 2014; Xie et
al. 2014), all configurations are evaluated under unit cost
transformation because in these experiments, we focused on
the coverage (number of problems solved within resource
limit) for purely satisficing search. Each experiment is run
10 times, and the means are shown in Table 1.

First, intra-plateau exploration hd increases coverage for
both heuristics hCG (187→ 194.2) and hFF (192→ 223.9).
This shows that intra-plateau exploration successfully al-
lows GBFS to avoid being trapped in h-value plateaus. Inter-
plateau exploration hD also increases coverage for both
heuristics, confirming the results in (Xie et al. 2014). It is
worth mentioning that the performance of hd is comparable
to hD, showing that intra-plateau exploration is no less im-
portant than inter-plateau exploration which previous work
focused on.

Second, the data shows that the effects of inter/intra-
plateau exploration are complementary, as would be ex-
pected since they are designed to address orthogonal is-
sues. In most cases, when hd improves upon h then hdD
improves upon hD, and when hD improves upon h then
hdD improves upon hd. As a result, for both hCG and
hFF heuristics, the hdD configuration had higher coverage
(hCG:215.8, hFF:223.9) than the hd (hCG:194.2, hFF:208) and
hD (hCG:206.1, hFF:207.4) configurations. This shows that
combining intra/inter-plateau exploration methods which
address orthogonal issues results in better overall perfor-
mance than either type of exploration by themselves.

Based on these results, we conclude that:
1. Inter- and intra-plateau exploration address orthogonal is-

sues and have complementary performance;
2. Combining inter- and intra-plateau exploration can result

in better performance than either exploration alone.

4 Breadth-Based Diversification:
Invasion Percolation

A limitation of type-based diversification based on path dis-
tance is that it does not diversify with respect to breadth
– nodes with equal estimated distance from goals (h), ini-
tial states (g) or plateau entrance (d) are put in a single set.
This makes it susceptible to pathological behavior on graphs
where some nodes have many more children than others.

2 ≦ d ≦ D, 1 ≦ b ≦ B

2<d<D

High-b component Hd,b

I

Low-b component Ld

L4L2 L3

H3 H4,1

H2,2

H2,1

H1

L1

Figure 2: Example case exhibiting large bias in the branch-
ing factor depending on the subgraph.

Consider a blind search on the directed acyclic graph
shown in Figure 2. The graph consists of two large compo-
nents, high-b and low-b branches, and their entries H1, L1.



hCG hFF

h hd hD hdD h hd hD hdD
intra inter both intra inter both

total 187 194.2 206.1 215.8 192 208 207.4 223.9
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C
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du
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ic

at
es elevators 9 8 8.7 9.7 19 14 15.9 13.7

nomystery 7 6 15.4 15.1 9 7 16.6 17
parcprinter 20 20 19.4 18.7 20 20 20 20
pegsol 20 20 20 20 20 20 20 20
scanalyzer 20 20 19.9 20 15 15.1 18 18.6
sokoban 16 16 16.9 17 19 19 17.4 17.4
tidybot 16 18 18.7 18.6 16 16 16 16.7
woodwork 2 2 2.7 7.7 2 2 4 7.2

IP
C

14

barman 0 0 0 0 0 0 1.5 1
cavediving 7 7 7 7 7 7 7 7.2
childsnack 1 6 0.1 1.5 0 4 0 0.3
citycar 0 0 7.8 4.7 0 0 7.2 7.1
floortile 0 0 2 2 2 2 2 2.1
ged 0 0 9.6 9.7 19 19 14 13.8
hiking 18 16.9 19.5 19.7 20 20 19.8 20
maintenance 16 16 16.1 15.8 11 8 10.7 11.1
openstacks 0 3.5 0 0.5 0 12.6 0 7
parking 7 9.7 1.2 4.1 4 7.5 1.4 5.7
tetris 18 17.1 12.4 14.3 1 5.8 3.2 4.9
thoughtful 5 5 5 5 8 9 12.7 13.1
transport 5 3 3.7 4.7 0 0 0 0
visitall 0 0 0 0 0 0 0 0

Table 1: Number of solved instances (5 min, 4GB
RAM), mean of 10 runs. h: baseline GBFS. hd/hD:
intra/inter-plateau type-based diversification [h, 〈d〉] and
alt([h], [〈g, h〉, ro]) (Type-GBFS), hdD: A combined con-
figuration, alt([h, 〈d〉], [〈g, h〉, ro]). Bold indicates that (im-
provements vs. baseline)> 0.5. Blue indicates that hdD im-
provement correlates with hd (intra-plateau) improvement,
red indicates that hdD improvement correlates with hD
(inter-plateau) improvement, and orange indicate that both
intra/inter-plateau schemes as well as the combined hdD
scheme improved. Thus, intra- vs. inter-plateau scheme have
complementary effects that improve hdD.

The initial search node is I and the goal node is L4. Both
branches have maximum depth D, and the high-b branch
has maximum width B. Both B and D are very large. This
graph presents a pathological case for all of the previously
described methods (lifo, fifo, ro and type-based diversifica-
tion), depending on successor ordering. lifo performs a DFS,
and if lifo first searchesH1 and the high-b branch due to suc-
cessor ordering, it must explore the entire high-b branch be-
fore expanding L1 and low-b branch. fifo performs Breadth-
First Search (BreadthFS), and will therefore suffer from the
high branching factor at depth 2 of the high-b branch, get-
ting stuck before reaching L4. Although randomization can
allow ro to be better off than the behavior of fifo/BreadthFS,
but the effect is limited: For example, while expanding depth
2, ro may occasionally expand depth 3 because it uniformly
randomly selects a node from OPEN. However, the probabil-
ity of expanding nodes at depth 3 is initially only 1/(B+1)
and continues to be small until most of the nodes at depth 2
are expanded, because OPEN is mostly populated with the
nodes from depth 2. Depth-based diversification addresses
the depth bias of BreadthFS. However, even though it dis-
tributes the effort among various depths, the probability of

Figure 3: Invasion Percolation on 2-dimensional lattice

expanding L2, L4 at depths 2 and 4, is only 1/(B+1) each,
which is very low when B is very large.

We propose Invasion Percolation-based diversification
(IP-diversification), a new diversification strategy for sat-
isficing search that addresses this type of bias. IP-
diversification combines randomization and Prim’s method
(Prim 1957) for Minimum Spanning Tree (MST).

Invasion Percolation Invasion Percolation (Wilkinson
and Willemsen 1983) simulates the distribution of fluid
slowly invading porous media, e.g., water replacing the air in
a porous rock. We focus on a variant called bond IP (BIP),
where “bonds” indicate edges in a lattice, and present the
graph-based description by Barabási (1996). Given initial
node(s) and a graph whose edges are assigned independent
random values, BIP iteratively marks the nodes. Once as-
signed, the random value on each edge never changes. The
initial nodes are marked by default. In each iteration marks
an unmarked node to which the least-value outgoing edge
leads. Marked nodes represent the porous sites whose air
is replaced by the water (invader). Barabási (1996) showed
that this algorithm is equivalent to applying Prim’s method
for MST (Prim 1957) on a randomly weighted graph: Prim’s
method constructs an MST by iteratively adding a neighbor-
ing edge with the least edge costs to the existing tree.

Figure 3 illustrates a 2-D lattice after running BIP for a
while. The initial nodes are at the leftmost edge of the rect-
angular region, i.e. the fluid percolates from the left. The
resulting structure has holes of various sizes that the fluid
has not invaded, due to the high-valued edges surrounding
the neighbors of the holes, which serve as an embankment
preventing the water from invading. Since the random value
on each edge is fixed, the algorithm does not mark the nodes
inside the hole until it marks all nodes with smaller random
values in the entire space outside the embankments. This be-
havior is critical to forming a fractal structure.

Invasion Percolation for Search Diversification We
adapt the BIP model as a exploration mechanism for best-
first search. Previous work on BIP was on physical simula-
tions with relatively small graphs, and to our knowledge, this
is the first application of BIP to complex implicit graphs.

Consider applying BIP to the DAG in Figure 2. There
is a non-negligible probability that the search finds the
solution without expanding high-b branch: This occurs
when the value v(H1) of H1 is higher than the value of
any of L1 . . . L4, whose probability is 1/5 (follows from∫ 1

0
dv(H1)Pr(∀i; v(Li) ≤ v(H1)) =

∫ 1

0
x4dx). In this

case, node H1 is acting as an embankment, causing nodes
in the low-b branch to be expanded. In contrast, the opposite



case is very unlikely: L1 could be expanded after expanding
all ofHd,b for 1 ≤ d ≤ 4 and 1 ≤ b ≤ B, but the probability
of this, 1/(2B + 3), is very small (assuming large B).

Also consider the case when H1 is expanded with proba-
bility 4/5. Even if this embankment is broken, H3 could act
as another embankment again with probability 1/5. More-
over, it also avoids expanding large number of nodes in H2,i

whose values are higher thanL1 . . . L4.B/5 of the nodes are
not expanded on average because each node is not expanded
with the same probability 1/5.

Thus, at every possible “bottleneck” in the search space
that forms an embankment, BIP tends to start looking at the
other branches. Since this is affected by the least width of a
subgraph rather than the maximum, it is less likely to suffer
from the pathological behavior exemplified by Figure 2.

The actual implementation of BIP is quite simple: A func-
tion rBIP returns a randomly selected value for each search
edge that caused the node to be evaluated. For each edge, the
function should always return the same value once a random
value is assigned to that edge. This requires storage whose
size is linear in the number of edges that are explored.

For intra-plateau exploration, rBIP is used to break ties
in a plateau induced by the primary heuristic function h,
i.e. [h, rBIP, ∗]. Since nodes are sorted in increasing order
of the memoized random value attached to each edge, the
node expansion order within a plateau follows that of Prim’s
method. For inter-plateau exploration, we alternate the ex-
pansion between standard GBFS and a queue sorted by rBIP:
alt([h], [rBIP]), just as in Type-GBFS.

Node expansion order according to rBIP differs signifi-
cantly from that of ro (pure random selection). ro is equiv-
alent to performing a random sort and select the first node,
i.e., ro essentially assigns a new random value to all nodes
at every single expansion. In contrast, rBIP assigns a value to
each edge only once, which develops embankments and al-
lows unexplored “holes” to have longer lifetimes. Consider
what would happen if we switch the behavior from rBIP to
ro starting from the state shown in Figure 3. Since all nodes
are assigned a new random value at each expansion, the em-
bankment nodes are more likely to be expanded, filling the
holes more quickly. Thus, running ro results in a more solid,
denser expansion biased to the left, near the initial nodes.

There is one difference between the assumptions made
by BIP/Prim (Barabási 1996) and classical planning. The
search spaces of classical planning are directed while
BIP/Prim assumes undirected graphs. Thus, although Prim’s
method finds the minimum spanning tree on an undirected
graph, it may not return the minimum-weight tree on a di-
rected graph. This, however, does not affect the complete-
ness of our search algorithm because it just changes the or-
der of expansion (BIP-based search diversification does not
prune any nodes). Adopting algorithms for minimum span-
ning arborescence for directed graphs (Chu and Liu 1965;
Edmonds 1967; Tarjan 1977; Gabow et al. 1986) to search
diversification is a direction for future work.

Search Behavior of IP-diversification We analyze the
basic search behavior of IP-diversification by applying a
blind search on IPC satisficing instances. We ran four con-
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Figure 4: Distribution of the evaluated nodes per depth.
h hb hd ro

ipc2014 sum 14 15 22 15
hiking 2 2 7 2
tetris 0 1 3 1
ipc2011 sum 30 48 50.8 35
pegsol 17 18.5 19 17
scanalyzer 4 4 6 4
sokoban 3 3 3.8 3
tidybot 2 17.5 14 6
visitall 0 0 3 0

Table 2: Problems solved under 3 minutes/4GB RAM (aver-
age of 10 runs). Best results are in bold. We do not show the
domains with no differences between configurations.

figurations, namely Type-based diversification with depth
d (hd:[〈d〉]) and IP-diversification (hb:[rBIP]), as well as
BreadthFS (h:[fifo]) and random search (ro:[ro]). All solvers
are terminated on 3 min/4GB resource limit.

We plotted the depth of the nodes expanded by these algo-
rithms on two representative runs (visitall-sat11-p20, tidybot-
sat11-p08) in Figure 4. As expected, ro behaves similarly to
BreadhFS/fifo (search is biased to the shallow depths) and
Depth-diversification shows a flat distribution because it is
specifically designed to achieve the fair allocation among
depths. Compared to BreadthFS/fifo and ro, the increase of
nodes-per-depth by IP-diversification is much slower, sup-
porting our observation that IP is controlled by the least
width in the search graph. Compared to Type-based diversi-
fication which shows linear nodes-per-depth, IP still exhibits
exponential behavior because IP has no explicit mechanism
for balancing the search efforts wrto depths. However, IP
expands smaller number of nodes in the shallower region.
Similar figures were obtained for other domains.

We also compared their performance on IPC instances.
The results show that both (hd) and (hb) improves upon
blind BreadthFS while not strictly dominating each other:
(hb) shows better performance than (hd) on Tidybot domain.
Comparison between ro and hb indicate that the blind perfor-
mance of IP is better than that of ro in tidybot and pegsol.

4.1 Evaluation of IP-Diversification
Given the performance of blind search, IP-diversification is
a good candidate for improving the performance of diversi-
fied heuristic search. We compared the performance of (h),
the standard GBFS, with the combined Type-based diver-
sification (hdD) from Sec. 3.1 as well as intra-plateau IP-
diversification (hb:[h, rBIP]), inter-plateau IP-diversification



hCG hFF

h hb hB hbB hdD h hb hB hbB hdD
intra inter both both intra inter both both

total 187 187.2 206.8 208.7 215.8 192 207.8 232.9 237.7 223.9

IP
C

11
w

/o
du

pl
ic

at
es

elev.. 9 9.2 12.6 13.3 9.7 19 18.2 18.5 19.4 13.7
nomy.. 7 6.4 5.5 5.6 15.1 9 6.6 7.6 6.6 17
parc.. 20 19.6 13.7 12.4 18.7 20 20 19.9 18.9 20
pegs.. 20 20 19.7 19.8 20 20 20 20 20 20
scan.. 20 20 20 20 20 15 16.6 19.1 19.1 18.6
soko.. 16 15.9 15.8 15.2 17 19 18.6 18.5 18.4 17.4
tidy.. 16 17.3 17.5 17.5 18.6 16 15 16.4 16.3 16.7
wood.. 2 1.8 14 12.8 7.7 2 1.5 14.8 15.7 7.2

IP
C

14

barm.. 0 0 0 0 0 0 0 7.6 6.5 1
cave.. 7 7.1 7 6.9 7 7 7 7 7 7.2
chil.. 1 0 0.1 0 1.5 0 0 0.1 0 0.3
city.. 0 0.2 1.1 0.4 4.7 0 0 3 3.8 7.1
floo.. 0 0 0.5 0.2 2 2 2 2.1 2 2.1
ged 0 0 4.8 4.6 9.7 19 19.2 12.8 13 13.8
hiki.. 18 15.9 18.7 18.8 19.7 20 17.6 19.9 20 20
main.. 16 14.6 14.9 14.1 15.8 11 6.7 10 5.8 11.1
open.. 0 0.1 2.5 2.4 0.5 0 15.7 11.7 14.5 7
park.. 7 10.4 7.6 10.9 4.1 4 5.4 2.3 4.8 5.7
tetr.. 18 19.7 17.6 19.4 14.3 1 8.6 7 11.1 4.9
thou.. 5 4.9 5.2 5.2 5 8 9.1 11.2 11 13.1
tran.. 5 4.1 6 7.1 4.7 0 0 0 0 0
visi.. 0 0 2 2.1 0 0 0 3.4 3.8 0

Table 3: Number of solved instances (5 min, 4Gb RAM),
mean of 10 runs. h: baseline GBFS. hb/hB: intra / inter-
plateau IP diversification [h, rBIP] and alt([h], [rBIP]), hbB:
A combined IP configuration alt([h, rBIP], [rBIP]), hdD:
alt([h, 〈d〉], [〈g, h〉, ro]) (same as hdD from Table 1) . The
same highlighting/coloring rules as Table 1 are applied,
showing that intra/inter-plateau schemes based on IP are
complementary. bold shows the improvements by hdD. Al-
though hbB and hdD are comparable overall, per-domain
comparison shows hbB and hdD are complementary.

(hB:alt([h], [rBIP])), and combined intra/inter-plateau IP di-
versification (hbB:alt([h, rBIP], [rBIP])).

Results are shown in Table 3. IP-diversification, applied
to both intra- and inter-plateau exploration, resulted in im-
provements on both the hFF and hCG heuristics. Comple-
mentary effects similar to Table 1 are observed between hb
and hB, and hbB outperforms both hb and hB. This pro-
vides additional empirical evidence for the hypothesis that
intra/inter-plateau exploration are complementary, and that
they can be combined to yield superior performance.

Overall, hbB performs comparably to hdD. However, note
that some domains were improved by Type-based but not
by IP (e.g. nomystery, sokoban, childsnack) or vise versa
(transport, visitall). These results indicate that Type-based
and IP diversification are orthogonal, addressing different
diversity criteria (depth vs breadth).

5 Intra- and Inter-Plateau Diversification on
a State-of-the-Art Planner

Up to this point, we have evaluated intra/inter-plateau ex-
ploration on greedy best-first search in order to cleanly
isolate their effect. Next, we evaluate the combined ef-
fect of intra/inter-plateau exploration when applied to a
state-of-the-art planner, the LAMA2011 configuration in

the current version of FastDownward, which incorpo-
rates a number of search enhancement techniques such
as lazy evaluation, multi-heuristic search and preferred
operators. In order to focus on coverage, we only run
the first iteration (unit-cost GBFS) of LAMA, denoted as
alt([hFF], pref

(
hFF
)
, [hLC], pref

(
hLC
)
), where hLC denotes

the landmark-count heuristic and pref (X) denotes the pre-
ferred operator queue with sorting strategy X .

We apply the methods proposed in this paper incremen-
tally. We first add a single exploration strategy to LAMA.
(d, b) augments [h] with type-based and IP diversification
for intra-plateau exploration ([h, 〈d〉] and [h, rBIP]), respec-
tively. (D, B) incorporates diversification for inter-plateau
exploration by adding

〈
g, hFF

〉
and [rBIP] to LAMA’s alter-

nation queue, respectively. LAMA+D is equivalent to Type-
LAMA (Xie et al. 2014).

Next, we combine intra/inter-plateau diversification meth-
ods: (dD) applies both changes in (d) and (D), and similarly
(bB) applies both changes in (b) and (B). Finally, (db2DB)
incorporates all 4 methods into LAMA.

Let db denote alt(〈d〉, rBIP), alternation between depth
and IP based diversification for intra-plateau exploration,
and let DB denote alt(

〈
g, hFF

〉
, rBIP), alternation be-

tween type-based and IP based diversification for inter-
plateau exploration. The resulting configuration, LAMA-
db2DB, incorporates all of the ideas proposed in this paper:
alt

(
[hFF, db], pref

(
hFF) , [hLC, db], pref

(
hLC) , DB)

. This con-
figuration alternates between type-based and IP diversifica-
tion in each iteration. It allocates 1/5 of the entire search
time to inter-plateau exploration (same as the frequency with
which Type-LAMA selects from

〈
g, hFF

〉
), so it spends 1/10

of the time on [rBIP] and 1/10 of the time on
〈
g, hFF

〉
).

Adopting more sophisticated approaches for determining
exploration frequency (Schulte and Keller 2014; Nakhost
and Müller 2009) is a direction for future work.

Table 4 shows the number of solved instances in 5 min,
4GB RAM limit. Each single diversification improved the
overall performance of LAMA except LAMA+B. For com-
binations of two methods (dD and bB), complementary ef-
fects by intra-/inter-plateau diversification similar to Table 1
are observed. Although LAMA+B did not result in improve-
ment, adding B to LAMA+b resulted in larger coverage in
LAMA+bB. Finally, bd2BD outperformed all other meth-
ods. We observed complementary effects from dD and bB,
each addressing different diversity criteria.

6 Conclusions and Future Work
In this paper, we first introduced the notion of Intra- and In-
ter-plateau exploration in satisficing heuristic search. While
previous work on exploration focused on inter-plateau ex-
ploration, we argued that intra-plateau exploration addresses
orthogonal issues, and showed that the type-based diversifi-
cation framework originally developed for inter-plateau di-
versification could be used to unify intra- and inter-plateau
diversification. We then showed empirically that these two
modes of diversification have orthogonal, complementary
effects when implemented as diversification strategies for
GBFS, and showed that it is possible to combine intra/inter-



Planners Based on the Latest FastDownward
LAMA +d +D +dD +b +B +bB +db2DB

total 293.2 296.5 294.3 295.4 293.3 287.6 297.6 304.5

IP
C

11
w

/o
du

pl
ic

at
es elevators 20 19.3 19 19.2 20 19.4 19.9 19.6

nomystery 10 9.9 17.4 16.4 9.8 10.4 9.7 16.1
parcprinter 20 18.4 19.9 19.7 18.2 19.5 18.3 19.3
pegsol 20 19 20 20 19.4 20 20 20
scanalyzer 19 19.3 19.1 19.2 19.5 19.6 19.5 19.2
sokoban 17 16.9 16.9 16.6 16.4 17 16.9 16.2
tidybot 16 17 15.8 15.8 14.8 15.7 16.5 16.5
woodwork 20 20 20 20 20 20 20 20

IP
C

14

barman 15 13.6 9.5 10.4 12.1 16 14.2 14
cavediving 7 7 7.1 7.1 6.8 6.9 6.7 7
childsnack 0 9.3 0.1 0 0.2 0.3 0.1 0
citycar 2 1 5.5 4.4 4.5 4.2 4.1 4.4
floortile 2 2 2.1 2 2 2 2 2
ged 20 20 20 20 20 20 20 20
hiking 18.5 18.7 17.5 18.7 19.1 17.5 19.6 18.8
maintenance 1 1 5.5 5.6 1 1 1 3.6
openstacks 20 20 20 20 20 20 20 20
parking 19.1 19.8 16.7 18.7 19.6 18.1 18.7 19.6
tetris 9.3 7.1 7.4 7.1 12.4 4.7 15.3 14.2
thoughtful 14 14.5 15.1 15.4 13.1 14.5 12.9 14.6
transport 3.3 3.8 2.6 3.8 4.4 3.7 3.8 3.5
visitall 20 18.9 17.1 15.3 20 17.1 18.4 15.9

Table 4: Number of solved instances in 5min,4GB RAM. LAMA’s sorting strategy is alt([hFF], pref
(
hFF
)
, [hLC], pref

(
hLC
)
).

For each heuristic h = hFF and h = hLC in LAMA, (d,b) augments [h] with type-based and IP diversification for
intra-plateau exploration ([h, 〈d〉] and [h, rBIP], respectively). (D,B) applies inter-plateau exploration by adding

〈
g, hFF

〉
and

[rBIP] to LAMA’s alternation queue, respectively. D corresponds to Type-LAMA (Xie et al. 2014). (dD) includes both
changes in (d) and (D), and similarly (bB) includes both changes in (b) and (B). Finally, (db2DB) combines all methods:
alt

(
[hFF, alt(〈d〉, rBIP)], pref

(
hFF) , [hLC, alt(〈d〉, rBIP)], pref

(
hLC) , alt(〈g, hFF〉, rBIP)

)
. The same highlighting/coloring rules as Ta-

ble 1 are applied. LAMA+db2DB successfully combines improvements from 4 diversification strategies and achieved the best
overall coverage.

plateau diversification, resulting in better performance than
either class of strategy alone.

Next, we showed that type-based diversification is not
sufficient for bias avoidance in graphs where nodes have
largely varying number of neighbors, and proposed IP-
diversification, a new breadth-aware diversification strat-
egy which addresses this issue. We then showed that IP-
diversification can be used as either intra- or inter-plateau
exploration strategy, i.e., unlike depth-diversification and
〈g, h〉 type-based diversification which are specialized for
either intra- or inter-plateau exploration, IP is a dual-mode
diversification strategy.

Finally, we showed that incorporating these two new ideas
(performing both intra/inter-plateau exploration, and IP-
diversification) into FD/LAMA yields state-of-the-art per-
formance on IPC benchmark instances.

While we investigated Bond-IP (BIP), the variant of In-
vasion Percolation which fixes random values to edges, the
dual variant which fixes values on nodes is called Site IP.
Analysis of SIP is a direction for future work. Valenzano et
al. (2014, Section 4.3) evaluate a baseline, knowledge-free
heuristic which assigns a random h-value to a node. By it-
self, this would behave similarly to the ro baseline strategy,

if heuristic values are reevaluated for reopened nodes. By
default, FastDownward reevaluates the heuristic value for
reopened nodes.2 However, Valenzano et al. disabled node-
reopening in all their experimental configurations, which, in
effect, fixes the random heuristic value for each node, so this
should behave similarly to SIP.

This paper has shown that exploration strategies such
as pure randomization, depth-diversification, 〈g, h〉 type-
bucket diversification, and IP-diversification are strategies
which can be plugged in as components in a search architec-
ture which performs exploration within and among plateaus.
In future work, other exploration strategies which have been
developed for blind search such as novelty-based metrics
used in Probe (Lipovetzky and Geffner 2011) and Iterated
Width (Lipovetzky and Geffner 2012) could be used as com-
ponents in this two-tiered exploration architecture.
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