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Mass-Manufacturing Domain and Loop Unrolling Strategy
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CELL-ASSEMBLY = Gripper + Woodworking + Logistics cycle

(based on [Ochi et al, SPARK2013])

e Assemble and paint products while moving them with arms

between tables or special purpose machines

e also a temporal problem (actions execute in parallel)

Everything except indices of the products are the same after a

cycle. Each loop path is identified by Steady State (SS) = a state

in the beginning of one cycle, indexed with .

Large-scale problems in factory assembly require the manufac-

turing of 100’s or 1000’s of identical products.

ex. S; : (at p; 11 table), (at p; arm), (painted p;).

Build a large plan by unrolling the same loop.

Two challenges for fully automated cyclic plan synthesis

WHICH STATES are Steady States? : Problem 1

e Search all states from Init and test them — impractical.

e Labelling some objects (table, machine)
(at) ? — Possible, but domain-dependent

and predicates

time

Which Steady State yields the best cyclic plan? : Problem 2

e Brute force search — impractical
o - testing each SS invokes a standard STRIPS planner each

ACP : Finding Efficient Loops based on Domain Independent Analysis

1. Main contribution: Owner / Lock
A unit capacity resource =~ a place.

use tablel € Attatch @ tablel.
A predicate being “a place or not”?
not trivial ‘- syntactically they look the same
Is this a place?  (human understanding)

(color ?p red) no,maybe
(at ?p tablel) yes,maybe
(pred ?p X) hmm, no idea

< Observation: tablel may be “(used tablel)”.

Now we have a fully automated method:
Predicate 0 = (P X; X5...) is a place when
there is a lock predicate [ that satisfies:

1. If a occupies o, check if the place o is not
in use, and acquire the lock [.

2. If a leaves o, release the lock |.

No assumptions about domain. — Applicable

2. Extract processes from a plan to enumerate
SSs (Solves Prob.1).
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[Enumerate All Bit vectors 000,001,010, 011..]

3. Pruning SSs (Solves
Prob.2) if they are:

| tablel | arml | tablel |
Infeasible 1 0 1

Deadlock 1 1 0
Duplicated* 1 0 0
0 1 0

(* They are the same loop)
Highly effective - e.g., on
CELL-ASSEMBLY problem in-
stance, reduced # of candi-
dates from 5 x 10 to 677.

Plan each cycle from S; to S;41,
get the least-makespan cyclic plan,
and generate N instance plan by
unrolling 4, with no additional
computational cost!
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e SCP:solve K = {1...9} products plan with |sssemBLY 16 |33 978 61.1 FD/LMcyt | 672 593 15
above 5 planners and get the mean makespan 2 1024 | 35 62466 61.0 43008 fail L5
. . - CELL- 4 [1893 660 165 |[I71(K = 1)| 176 237 28
per product. Some even failed to solve K' =9 |, gepvmry 16 [1953 2352 147 FD/LAMA | 704 345 33
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Conclusions

Owner/lock method is
applicable to general
STRIPS input

Owner/lock exists in
IPC domains

Solved large problems
by simply unrolling the
loop many times (neg-
ligible marginal cost)




