Fully Automated Cyclic Planning for Large-Scale
Manufacturing Domains

Masataro Asai and Alex Fukunaga
The University of Tokyo

Mass-Manufacturing Domain and Loop Unrolling Strategy

i ti SCrew-c . .
carry-out P ~— We used the cyclic structure of the domain.
(conveyor) | ~—1 (g;?tyt-r;) ° Waiting (

table-out table2 y l-th Product
tray—aE @ ?aljr[nrlg oiling cycle
table-in f;tl’)::)l (machine) Advance 1 step
~—]
= dSha :
gasket screw-a l+ 1 -th
CELL-ASSEMBLY = Gripper + Woodworking + Logistics cycle

(based on [Ochi et al, SPARK2013])

e Assemble and paint products while moving them with arms

between tables or special purpose machines

e also a temporal problem (actions execute in parallel)

Everything except indices of the products are the same after a

cycle. Each loop path is identified by Steady State (SS) = a state

in the beginning of one cycle, indexed with .

Large-scale problems in factory assembly require the manufac-

turing of 100’s or 1000’s of identical products.

ex. S; : (at p; 11 table), (at p; arm), (painted p;).

Build a large plan by unrolling the same loop.

Two challenges for fully automated cyclic plan synthesis

WHICH STATES are Steady States? : Problem 1

e Search all states from Init and test them — impractical.

e Labelling some objects (table, machine)
(at) ? — Possible, but domain-dependent

and predicates

time

Which Steady State yields the best cyclic plan? : Problem 2

e Brute force search — impractical
o - testing each SS invokes a standard STRIPS planner each

ACP : Finding Efficient Loops based on Domain Independent Analysis

1. Main contribution: Owner / Lock
A unit capacity resource =~ a place.

use tablel € Attatch @ tablel.
A predicate being “a place or not”?
not trivial ‘- syntactically they look the same
Is this a place? (human understanding)

(color ?p red) no,maybe
(at ?p tablel) yes,maybe
(pred ?p X) hmm, no idea

< Observation: tablel may be “(used tablel)”.

Now we have a fully automated method:
Predicate 0 = (P X; X5...) is a place when
there is a lock predicate [that satisfies:

1. If a occupies o, check if the place o is not
in use, and acquire the lock [.

2. If a leaves o, release the lock |.

No assumptions about domain. — Applicable

2. Extract processes from a plan to enumerate
SSs (Solves Prob.1).

A State Action
@ @ Build a single
Single product plan of @ -product plan
Ll ? ~
X Extract Processes
—" by seeing the change
Using arml \ of lockedness
tablel — of a place
Processl | | Process 2| |Process 3 a‘;:zi(;b'l'l‘ct
to each
=101 process,
making a
= (11 | bit vector

[Enumerate All Bit vectors 000,001,010, 011..]

3. Pruning SSs (Solves
Prob.2) if they are:

| tablel | arml | tablel |
Infeasible 1 0 1

Deadlock 1 1 0
Duplicated* 1 0 0
0 1 0

(* They are the same loop)
Highly effective - e.g., on
CELL-ASSEMBLY problem in-
stance, reduced # of candi-
dates from 5 x 10 to 677.

Plan each cycle from S; to S;41,
get the least-makespan cyclic plan,
and generate N instance plan by
unrolling 4, with no additional
computational cost!

to any STRIPS input =Enumerate All SSs
i of [run- ACP ke SCP mak manual CPT(h2) gap (ACP/
M Problem pr(gducts time maﬁespan (prgrapgg ﬁrclt) (perrBrao ﬁgsn Ibound lbo&nd) max. Ibound)
. N |[sec] ¢ c /N C /K Loy !
e ACP vs 5 planners (FD/LMcut+post hed- ACP_ ACP SCP » CPT
p (cuttpostprocessing sche CELL- 7 (1048 331 8 [83(K =2)| 156 1763 o
uler, FD/LAMA-+postprocessing scheduler, yahsp, DAE, CPT) [ASSEMBLY 16 [1049 1255 78.4 FD/LMc¢yt 624 460 2.0
vs (best score of) 5 Simple Cyclic Planner (SCP). 1 1024 1050 78871 770 | (+ scheduler) | 39936 fail 2.0
. CELL- 4 [34 246 615 [623(K = 3)| 168 I81.12 [
e SCP:solve K = {1...9} products plan with |sssemBLY 16 |33 978 61.1 FD/LMcyt | 672 593 15
above 5 planners and get the mean makespan 2 1024 | 35 62466 61.0 43008 fail L5
. . - CELL- 4 [1893 660 165 |[I71(K = 1)| 176 237 28
per product. Some even failed to solve K' =9 |, gepvmry 16 [1953 2352 147 FD/LAMA | 704 345 33
e 5 CELL-ASSEMBLY, modified TPC Temporal 3 1024 |1973 144480 1411 45056 fail 32
. : CELL- 4 [1163 318 795 [813(K = 3)| 112 191 17
Woodworking, unmodified [PC Barman. ASSEMBLY 16 1162 1074 67.1 FDLMcy | 448 240 24
o ACP solved all instances. 4 1024 1165 64578 63.1 28672 fail 2.3
.. CELL- 7 1968 804 201 [203(K = 1)| 172 333 24
¢ Standard planners failed for N > 16. ASSEMBLY 16 |1856 2508 156.8 FD/LMcy; | 688 532 36
o ACP was signiﬁcantly better than SCP. 5 1024 1894 145644 142.2 44032 fail 33
ati Ibound i bl q WW 4 [11 80 20 172(K = 9)] 60 80 I
e Gap relative to Ibound is reasonably good. product : 16 |11 260 163 FD/LAMA | 240 185 1.1
e Automatically detected owner/lock struc- parts 1024 | IS 15380 15.0 15360 _ fail 10
ture in standard IPC bl and Barman 4 [331 35 88 63(K =4)| 4 21 17
ure In standar problems and gener- | . qyct: 16 [332 179 112 FD/LMcy | 16 26 6.9
ated cyclic solutions. cocktail 1024 332 12275 12.0 1024 fail 12.0

Conclusions

Owner/lock method is
applicable to general
STRIPS input

Owner/lock exists in
IPC domains

Solved large problems
by simply unrolling the
loop many times (neg-
ligible marginal cost)

