
Fully Automated Cyclic Planning for Large-Scale
Manufacturing Domains

Masataro Asai and Alex Fukunaga
The University of Tokyo

Mass-Manufacturing Domain and Loop Unrolling Strategy

CELL-ASSEMBLY ≈ Gripper + Woodworking + Logistics
(based on [Ochi et al, SPARK2013])
• Assemble and paint products while moving them with arms

between tables or special purpose machines
• also a temporal problem (actions execute in parallel)

Large-scale problems in factory assembly require the manufac-
turing of 100’s or 1000’s of identical products.

We used the cyclic structure of the domain.

Everything except indices of the products are the same after a
cycle. Each loop path is identified by Steady State (SS) ≡ a state
in the beginning of one cycle, indexed with i.

ex. Si : (at pi+1 table), (at pi arm), (painted pi).
Build a large plan by unrolling the same loop.

Two challenges for fully automated cyclic plan synthesis
WHICH STATES are Steady States? : Problem 1
• Search all states from Init and test them → impractical.
• Labelling some objects (table, machine) and predicates

(at) ? → Possible, but domain-dependent

Which Steady State yields the best cyclic plan? : Problem 2
• Brute force search → impractical
• ∵ testing each SS invokes a standard STRIPS planner each

time

ACP : Finding Efficient Loops based on Domain Independent Analysis
1. Main contribution: Owner / Lock
A unit capacity resource ≈ a place.

use table1 ∈ Attatch @ table1.
A predicate being “a place or not”?

not trivial ∵ syntactically they look the same
Is this a place? (human understanding)
(color ?p red) no,maybe
(at ?p table1) yes,maybe
(pred ?p X) hmm, no idea

⇔ Observation: table1 may be “(used table1)”.
Now we have a fully automated method:
Predicate o = (P X1 X2...) is a place when
there is a lock predicate l that satisfies:

1. If a occupies o, check if the place o is not
in use, and acquire the lock l.

2. If a leaves o, release the lock l.

No assumptions about domain. → Applicable
to any STRIPS input

2. Extract processes from a plan to enumerate
SSs (Solves Prob.1). 3. Pruning SSs (Solves

Prob.2) if they are:
table1 arm1 table1

Infeasible 1 0 1
Deadlock 1 1 0
Duplicated∗ 1 0 0

0 1 0
(∗ They are the same loop)
Highly effective - e.g., on
CELL-ASSEMBLY problem in-
stance, reduced # of candi-
dates from 5× 106 to 677.
Plan each cycle from Si to Si+1,
get the least-makespan cyclic plan,
and generate N instance plan by
unrolling i, with no additional
computational cost!

Experiments
• ACP vs 5 planners (FD/LMcut+postprocessing sched-

uler, FD/LAMA+postprocessing scheduler, yahsp, DAE, CPT)

vs (best score of) 5 Simple Cyclic Planner (SCP).
• SCP: solve K = {1 . . . 9} products plan with

above 5 planners and get the mean makespan
per product. Some even failed to solve K = 9

• 5 CELL-ASSEMBLY, modified IPC Temporal
Woodworking, unmodified IPC Barman.

• ACP solved all instances.
• Standard planners failed for N ≥ 16.
• ACP was significantly better than SCP.
• Gap relative to lbound is reasonably good.
• Automatically detected owner/lock struc-

ture in standard IPC problems and gener-
ated cyclic solutions.

Problem ♯ of
products

run-
time

ACP
makespan

makespan
(per product)

SCP makespan
(per product)

manual
lbound

CPT(h2)
lbound

gap (ACP /
max. lbound)

N [sec] cACP cACP/N cSCP/K lm lCPT
CELL- 4 1048 331 82.8 83 (K = 2) 156 176.3 1.9

ASSEMBLY 16 1049 1255 78.4 FD/LMcut 624 460 2.0
1 1024 1050 78871 77.0 (+ scheduler) 39936 fail 2.0

CELL- 4 34 246 61.5 62.3 (K = 3) 168 181.12 1.4
ASSEMBLY 16 33 978 61.1 FD/LMcut 672 593 1.5

2 1024 35 62466 61.0 43008 fail 1.5
CELL- 4 1893 660 165 171 (K = 1) 176 237 2.8

ASSEMBLY 16 1953 2352 147 FD/LAMA 704 345 3.3
3 1024 1973 144480 141.1 45056 fail 3.2

CELL- 4 1163 318 79.5 81.3 (K = 3) 112 191 1.7
ASSEMBLY 16 1162 1074 67.1 FD/LMcut 448 240 2.4

4 1024 1165 64578 63.1 28672 fail 2.3
CELL- 4 1968 804 201 203 (K = 1) 172 335 2.4

ASSEMBLY 16 1856 2508 156.8 FD/LMcut 688 532 3.6
5 1024 1894 145644 142.2 44032 fail 3.3

WW 4 11 80 20 17.2 (K = 9) 60 80 1
product : 16 11 260 16.3 FD/LAMA 240 185 1.1

parts 1024 15 15380 15.0 15360 fail 1.0
Barman 4 331 35 8.8 6.3 (K = 4) 4 21 1.7
product : 16 332 179 11.2 FD/LMcut 16 26 6.9
cocktail 1024 332 12275 12.0 1024 fail 12.0

Conclusions
Owner/lock method is
applicable to general
STRIPS input

Owner/lock exists in
IPC domains
Solved large problems
by simply unrolling the
loop many times (neg-
ligible marginal cost)


